
Testing on the ToiletTesting on the Toilet June 26, 2008

Defeat "Static Cling"Defeat "Static Cling"

You're pair programming and, as many brilliant people are apt to do, talking out loud. "I'll make a mock, inject it,
and rerun the test. It should pa- ...D'OH" Your partner notices the exception "ConnectionFactory not initialized".
"What?" she says, "Something is using the database? Dang, and this was supposed to be a small test."

Upon inspection you find that your class is calling a static method on some other class. You've got Static Cling!
If you're (ab)using a data persistence layer that generates code which relies on static methods, and weren't careful,
your code might look something like this:

public class MyObject {
 public int doSomething(int id) {
 return TheirEntity.selectById(id).getSomething();
 }

As a result, you can't call doSomething without calling TheirEntity's static method. This code is hard to test
because static methods are impossible to mock in Java.

So, how do you get rid of this form of Static Cling and get that small test to pass? You can use a technique
sometimes known as the Repository Pattern, a form of Abstract Factory. Create an interface and an
implementation with the unmockable static method calls:

interface TheirEntityRepository {
 TheirEntity selectById(int id);
 // other static methods on TheirEntity can be represented here too
}

public class TheirEntityStaticRepository implements TheirEntityRepository {
 public TheirEntity selectById(int id) { // method not static
 return TheirEntity.selectById(id); // calls static method
 }

Next, inject a TheirEntityRepository into MyObject and use it instead of calls to the static method:
public class MyObject {
 private final TheirEntityRepository repository;
 public MyEntity(TheirEntityRepository arg) { this.repository = arg; }

 public int doSomething(int id) {
 return repository.selectById(id).getSomething();
 }

You can do this even if you don't have access to source code for TheirEntity, since you're not changing the
source itself, but merely encapsulating its static methods in an injectable interface. The techniques shown here
generalize to the case where a static method acts as a Factory of objects.

Now you can inject different implementations of the repository for different tests, such as "never finds anything,"
"always throws an exception," "only returns a TheirEntity if the id is a prime," and so forth. These kinds of
tests would've been impossible before this refactoring.

More information, discussion, and archives:
http://googletesting.blogspot.com

Copyright © 2007 Google, Inc. Licensed under a Creative Commons
Attribution–ShareAlike 2.5 License (http://creativecommons.org/licenses/by-sa/2.5/).

