Debugging
sucks.

Testing on the Toilet January 22, 2007

Better Stubbing in Python

=

So you've learned all about method stubs, mock objects, and fakes. You might be tempted to stub out slow or
I/O-dependent built-ins. For example:

def Foo (path):
if os.path.exists (path):
return DoSomething ()
else:
return DoSomethingElse ()

def testFoo(self): # Somewhere in your unit test class
old exists = os.path.exists
try:

os.path.exists = lambda x: True
self.assertEqual (Foo('bar'), something)
os.path.exists = lambda x: False

self.assertEqual (Foo('bar'), something else)
finally:
os.path.exists = old exists # Remember to clean-up after yourself!

Congratulations, you just achieved 100% coverage! Unfortunately, you might find that this test fails in strange
ways. For example, given the following DoSonet hi ngEl se, which checks the existence of a different file:

def DoSomethingElse() :
assert os.path.exists(some other file)
return some other file

Foo will now throw an exception in its second invocation because 0s. pat h. exi st s returns False so the
assertion fails.

You could avoid this problem by stubbing or mocking out DoSonet hi ngEl se, but the task might be daunting in a
real-life situation. Instead, it is safer and faster to parameterize the built-in:

def Foo(path, path checker=os.path.exists):
if path checker (path):
return DoSomething ()
else:
return DoSomethingElse ()

def testFoo(self):
self.assertEqual (Foo('bar', lambda x: True), something)
self.assertEqual (Foo('bar', lambda x: False), something else)

More information, feedback, and discussion:

http://googletesting.blogspot.com

Copyright © 2007 Google, Inc. Licensed under a Creative Commons Q
Attribution—ShareAlike 2.5 License (http://creativecommons.org/licenses/by-sa/2.5/). ‘



http://googletesting.blogspot.com/
http://creativecommons.org/licenses/by-sa/2.5/

		Testing on the Toilet	January 22, 2007
Better Stubbing in Python

